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COGENT is a continuum gyrokinetic code for edge plasmas being developed by the Edge Simulation Laboratory 
collaboration. The code is distinguished by application of the fourth order conservative discretization, and 
mapped multiblock grid technology to handle the geometric complexity of the tokamak edge. It is written in v|| - μ
(parallel velocity – magnetic moment) velocity coordinates, and making use of the gyrokinetic Poisson equation 
for the calculation of a self-consistent electric potential. In the present manuscript we report on the 
implementation and initial testing of a succession of increasingly detailed collision operator options, including a 
simple drag-diffusion operator in the parallel velocity space, Lorentz collisions, and a linearized model Fokker-
Planck collision operator conserving momentum and energy.

Copyright line will be provided by the publisher

1 Introduction

Although δf particle-in-cell (PIC) simulation techniques available for modeling of the tokamak core region can 
provide low level of numerical noise, concern about PIC noise in the full-f simulations required to model large 
density variations in the tokamak edge motivates the use of a continuum kinetic code for the edge modeling [1].
Making use of advanced numerical methods from fluids community, and building on the success of continuum 
core codes [1] (e.g., GYRO, GENE, etc.) and the continuum edge code TEMPEST [1, 2], the Edge Simulation 
Laboratory collaboration (ESL) has started development of a new-generation continuum kinetic code COGENT.
The COGENT code solves the conservative form of the gyro-kinetic equations by making use of the fourth-order 
finite-volume (conservative) discretization independent of grid choice, hence providing no loss of accuracy order 
in going to non-uniform grid [3, 4]. This framework allows using arbitrary mapped multiblock grids (field-aligned 
on blocks) to handle the complexity of divertor geometry without loss of accuracy. Another distinguishing feature 
of the code is the use of the Colella-Sekora flux-limiter to suppress unphysical oscillations about discontinuities 
while maintaining high-order accuracy elsewhere [5]. Finally, the code is written in v||-μ (parallel velocity –
magnetic moment) coordinates, which avoids “cut-cell” issues appearing, for instance, when E - μ (energy –
magnetic moment) coordinates are used.   

The performance of the numerical algorithms utilized for solving the gyrokinetic Vlasov-Poisson 
equations has been successfully tested in the simulation of the collisionless relaxation of geodesic acoustic modes 
(GAMs), and an excellent agreement with an analytical theory along with 4-order convergence of the numerical 
errors have been observed [4]. In the present work the report on implementation and testing of a succession of 
increasingly detailed collision operator options, including a simple drag-diffusion operator in the parallel velocity 
space, Lorentz collisions, and a linearized model Fokker-Planck collision operator conserving momentum and 
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energy. Finally, we note that we have also implemented and tested the Krook collision model, however, for 
brevity, we do not report the results of those studies in the present work.

2 Simulation model

The present 4D version of the COGENT code (2 configuration space + 2 velocity space coordinates) solves
axisymmetric electrostatic multi-species gyrokinetic Boltzman-Poisson equations for the gyrocenter distribution 
functions fα(R,v||,μ,t) and the electrostatic potential Φ(R,t). Here R is the gyrocenter position coordinate, v|| is the 
parallel velocity, μ is the magnetic moment, and the corresponding kinetic equation is given by [6]
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where dR/dt=Vgc=v||b+Vdr and dv||α/dt=(–1/mαv||α)Vgc∙(Zα Φ+μ B), Vdr is the magnetic drift velocity composed 
of the E×B drift, curvature drift, and B drift [6], B is the applied magnetic field, and Cα[fα] is the collision 
operator. The present version of the code assumes the long wavelength limit k┴ρα<<1, in which the gyrokinetic
Poisson equation takes the form [1, 7]
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Here, nα,gc=(2π/mα)∫B*
||αdv||dμ{ fα+ (ρα

2/2)   fα} is the ion gyrocenter density, B*
||α=B[1+(v||/Ωα)b∙ ×b], Ωα and ρα

denote the species cyclotron frequency and thermal gyroradius, and various adiabatic models are available in the 
code to model the electron density, ne.

3 Collision models

Several model collision operators have been implemented and tested in COGENT. These include a model parallel 
drag-diffusion collision operator, the Lorentz operator, and the linearized Fokker-Plank collision operator in the 
form proposed by Abel et al in Ref. [8]. In what follows, a brief description of collision models along with the 
summary of initial tests is presented.

3.1 Parallel drag-diffusion collision operator

A model “parallel drag-diffusion” operator 

  fmTfC c |||| v||v|| v                                                           (3)                                              

provides drag and diffusion in the parallel velocity space. Here, νc is the collision frequency, the derivative with
respect to the parallel velocity coordinate, ∂v||≡∂/∂v||, is evaluated at a fixed magnetic moment, and m and T
correspond to the species mass and equilibrium temperature, respectively. The implementation of this collision 
model has been verified for a test problem, where particles confined along the magnetic field direction by a square 
electrostatic potential well become untrapped due to collisions and are lost. A schematic of the simulation domain
is shown in Fig. 1(a). For this simulation the magnetic drifts are turned off, and only the parallel streaming is 
allowed. The potential distribution shown in Fig. 1(b) is effectively modeled by the corresponding boundary 
conditions at θ=0 (θ=2π) plane, which provide reflection of low-energy incident particles with v||<(2qφ0/m)1/2 and 
absorption of high-energy particles with v||>(2qφ0/m)1/2. Here, q is the particle charge, and φ0 is the magnitude of 
the potential barrier. The simulation is initialized with a uniform Maxwellian distribution function 
fM=(1/πvT)3/2n0exp(–v2/vT

2–μB/T), where vT=(2T/m)1/2 is the thermal velocity.
An approximate analytical solution to the problem can be obtained in the weak-collision limit, i.e., for 

the case where the collision frequency, νc, is much smaller than the effective bounce frequency, ωB=vT/2Lc. Here,
Lc is the connection length given for the present geometry by Lc=(B/Bp)∙2πr, where Bp is the poloidal component 
of the applied magnetic field [Fig. 1(a)]. For this case the high-energy particles forming the tail of the initial 
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Fig. 1   Parallel particles losses over a potential barrier. (a) Schematic of the simulation geometry, rmin/R=0.0002, Δr/rmin=0.2, 
the ratio of the toroidal to the poloidal magnetic field is BT/Bp=4. (b) Distribution of the applied potential. (c) Evolution of the 
particle distribution function in the weak-collision limit, ωB/νc=30, v0=vT. The black dots correspond to the results of the 
COGENT simulations, and the red curve shows the analytical solution given in Eq. (6), where C0 is chosen to match the 
maximum value of the distribution function at t=1/νc. Grid resolution corresponds to nr=8, nθ=32, nv||=32, nμ=8.

distribution are rapidly lost on the time sale τ=Lc/v0, and during the following stage of a slow collisional decay the
distribution function can be approximated by its bounce-average value F, which evolves according to

 FCtF || ,                                                 (4)                                              

Furthermore, in the weak-collision limit, i.e., νc<< ΩB, we can take (to the zero order in νc/ΩB) F=0 for |v|||≥v0. 
Equation (4) has a series of exact solutions
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where M[a,b,x] is the Kummer confluent hypergeometric function, and the eigenvalues λn are determined from the 
boundary conditions F(±v0,μ,t)=0. The bounce-averaged distribution function can be now constructed as F=ΣCnFn, 
where the coefficients Cn are determined from the initial conditions. Note that for the considered parameters, 
v0/vT=1.0, the eigenvalues λn rapidly increase (λ0=0.79, λ1=10.75, λ2=30.5 …), therefore after a relatively short 
transient time period, τtr~1/(νcλ1) the asymptotic behavior of the distribution function F, is given by

         tFCtF tr ,,v,,v ||00||      (6)

Fig. 2   Effects of finite νc/ωB corrections on the distribution function decay rate. Shown is the time evolution of the 
distribution function maximum value. The black dots correspond to the results of the COGENT simulations, the red lines show 
the weak-collision theoretical prediction, and the blue lines correspond to the decay rate obtained from the “sum rule” [Eq. (7)],
where, for the considered parameters, γf=0.43ωB. 

Results of the numerical simulations obtained in the weak collision limit for ωB/νc=30 demonstrate excellent 
agreement with the analytical predictions [see Figs. 1(c) and 2(a)]. It is also interesting to note that the departure 
from the weak-collision decay rate observed in the simulations with an increased collision frequency [Figs. 2(b) 
and (c)] can be described well by the “sum rule” [9], 
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where, γ=(1/N)dN/dt is the decay rate, N is the total number of particle, γc is the decay rate corresponding to the 
weak-collision limit (νc<<ωB), and γf is the decay rate corresponding to the strong-collision limit (νc>>ωB), in 
which the distribution function can be approximated by a Maxwellian distribution and the particle parallel losses 
are determined by the “gas-dynamic” flow, i.e. 
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Here, L|| is the parallel length of an electrostatic trap, given for the present geometry by L||=Lc=(B/Bp)∙2πr.   

3.2   Lorentz collision operator

The Lorentz operator, 

     fvfC cL    21
2

1
,                                                        (9)                                              

provides pitch angle scattering in the velocity space. Here, νc is the collision frequency, the derivative with respect to 
the pitch-angle variable, ξ=v||/v, is evaluated at a fixed particle energy, E=mv2/2, and a gyrophase-independent 
distribution function is assumed. Note that although the Lorentz operator conserves particles energy analytically, 
spurious diffusion in the energy space appears (see Fig. 3) due to approximate (finite-difference) numerical evaluation 
of the operator, using the parallel velocity v|| and magnetic moment μ coordinates. Therefore, it is of particular 
importance to develop and implement a higher-order finite-difference scheme that can minimize the effects of spurious 
energy diffusion. Figure 3 demonstrates that the spurious diffusion is significantly suppressed (to a tolerable level) for 
the case where a 4-th order accurate numerical scheme is implemented. In order to test the performance of the 
implemented Lorentz operator, full-f simulations of neoclassical transport have been performed. The results are found 
in very good agreement with the analytical theory developed in [10] for the case of the Lorentz operator (see Fig. 4).

                                            

Fig. 3   COGENT simulations of the pitch-angle scattering of an initial distribution function represented by a blob in the 
velocity space. The figure shows plots of (a) the initial distribution (t=0), (b) distribution function at νct=4 obtained with the 
second-order accurate implementation of the Lorentz operator, and (c) distribution function at νct=4 obtained with the fourth-
order accurate implementation of the Lorentz operator. The solid black lines illustrate the contours of constant energy. Note
that the different scales in color schemes are used in the frames, and the maximum values of the distribution functions in 
frames (a), (b), and (c) are related as 1:0.067:0.13, correspondingly. Grid resolution in the velocity space corresponds to 
nv||=64, nμ=32.

3.3   Full linearized collision operator and a simplified non-linear isotropic collision model

For brevity, we only mention here that a linearized model Fokker-Plank collision operator conserving momentum 
and energy has been recently implemented in COGENT in the form proposed by Abel et al in Ref. [8]. Also, a 
simplified nonlinear collision model taking into account isotropic nonthermal effects has been formulated by 
straightforward generalization of the linearized model. The nonlinear model operator for like-particle collisions 
takes the form

(a) (b) (c)
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Fig. 4   COGENT simulations (dots) of the radial neoclassical ion transport for the case of the Lorentz collision operator. 
Shown the plots of (a) flux-surface averaged particle flux, and (b) flux-surface averaged heat flux versus the normalized 
collision frequency ν*=νcε

-3/221/2qR0/vT. The red and blue lines correspond to the analytical calculations [10] in the banana and 
Pfirsch-Schluter regimes, correspondingly. The parameters of the simulation correspond to safety factor q=3, inverse aspect 
ratio ε=0.1, ion temperature T=3 KeV, ion mass mi=2mp, where mp is the proton mass, major radius R0=45.6 m, toroidal 
magnetic field on axis B0=7.5T, inverse temperature and density gradients κn=κT=10/R0, and the magnetic field geometry 
corresponds to flux tubes with nested circular cross-sections. Grid resolution in [r, θ, v||, μ] domain corresponds to        
[16, 32, 80, 40] for the banana regime, and [16, 32, 32, 16] for the Pfirsch-Schluter regime.

      ffPffCffC FPNL  ,, ,                                                      (10)                                              

where <f> is the isotropic part of the distribution function (in the velocity space), CFP[f,<f>] is the full nonlinear 
Fokker-Plank operator describing collisions with an isotropic background, and P[f] are model restoring terms, 
providing conservation of particles, momentum and energy. For the case where <f> is a Maxwellian distribution, 
the nonlinear collision model reduces to the linearized collision model. Implementation of the nonlinear collision 
model is underway.

4 Conclusion

In the present work we have reported on the implementation and testing of a succession of increasingly detailed 
collision operator options, including a simple drag-diffusion operator in parallel velocity space, Lorentz collisions, 
and a linearized model Fokker-Planck collision operator conserving momentum and energy. Based on the 
generalization of the linearized operator we have also formulated a model nonlinear collision operator for the case 
where a distribution function is nearly isotropic, but arbitrary in speed. We have performed a number of 
verification tests of these operators, including recovery of analytic results for loss over a prescribed potential 
barrier and recovery of the neoclassical fluxes. 
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